
A small dive in Rust
@ Midis de la bidouille

1

Rust Mo!o

Rust is a systems programming language that runs blazingly fast, prevents segfaults, and
guarantees thread safety.

Featuring
- zero-cost abstractions
- move semantics
- guaranteed memory safety
- threads without data races
- trait-based generics
- pattern matching
- type inference
- minimal runtime
- efficient C bindings

2

History

— Toy langage of Graydon Hoare (2006),
— Endorsed by Mozilla (2009),
— Self-compiling (2011),
— Version 1.0 (2015),
— Production years (Mozilla (Firefox...), Atlassian,

Coursera, Dropbox, Samsung, Pollen Robotics...)
— Today: version 1.27

3

Rust community =
❤

As Rust's community grows, three large camps form:

— Ex C++ users,
— Ex scripting language users,
— Ex functional programmers.

In some ways, Rust is a combination of all three of these things.

Friendly community : code of conduct.

4

Rust and me

— I love programming languages.
— I contributed to Rust up to version 0.7. Lots of changes

have happened since then.
— Nowadays I use Rust as much as possible for:

— Replacing Python scripts,
— Scientific computing (even though the ecosystem is

quite young). I did a partial rewrite of our numerical
framework (Cadmos) in Rust (which calls the original C++
version in some places).

5

Installing Rust

The best way to install Rust is with rustup, a Rust version
manager. To install it type:

$ curl https://sh.rustup.rs -sSf | sh

To keep your rust up-to-date with the latest release of rust, type

$ rustup update

Code may also be run on a playground at http://play.rust-lang.org/.

6

http://rustup.rs
http://play.rust-lang.org/

Cargo

Cargo is a tool that helps you develop Rust programs. It does several things:

— Runs tasks: cargo build (compile your app), cargo test (test your app), cargo run (run you app),
— Starts a project: cargo new, cargo init

Cargo is also the package manager for Rust. This means that you can use Cargo to install and
manage bits of other people's code.

— A program or library is called a "crate".
— A package contains one or more crates.
— You can find Crates at http://crates.io.
— You list the Crates you want to use in the Cargo.toml file.

7

http://crates.io

Hello world and basic syntax

If we look at the mandatory "hello world":

 fn main() {

 println!("Hello world!");

 }

— fn declares a function.
— Function bodies go in curly braces: {}.
— The println! macro (the ! means it's a macro) prints stuff to the screen.
— Strings go inside double quotes "".
— Lines end with a semicolon ;

8

Basic concepts

Variables and mutability

Rust variables are not mutable by default:

fn main() {

 let x = 5;

 x = 6 ; // -> error[E0384]: cannot assign twice to immutable variable `x`

 let mut y = 6;

 y = 7; // OK

}

9

Data types

Rust must know the type of all variables at compile
time. Types are often infered by the compiler.

let trois: u32 = 3;

Scalar Types:
 - integer (i32, u64, usize...),
 - floats (f32, f64),
 - bool (true/false).

10

Coumpound types

Tuples

A tuple is a general way of grouping together some number of
other values with a variety of types into one compound type.

 fn main() {
 let tup: (u32, f64, isize) = (500, 6.4, 1);

 let (x, y, _) = tup;

 println!("y is: {}, x is: {}", y, tup.0);
 }

11

Arrays

Another way to have a collection of multiple values is with an
array. Unlike a tuple, every element of an array must have the
same type.

 fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
 let out_of_bounds = a[1515];
 }
/// -> thread 'main' panicked at 'index out of bounds: the len is 5 but the index is 1515', src/main.rs:6:25

Arrays in Rust have a fixed length (see Vec for dynamic arrays.)

12

Collections

— String: UTF-8

 let st=String::from("hello
!

");

— HashMaps:

 use std::collections::HashMap;

 let mut scores = HashMap::new();

 scores.insert(String::from("France"), 1);

 scores.insert(String::from("Pérou"), 0);

 for (key, value) in &scores {

 println!("{}: {}", key, value);

 }

13

Vectors

 Vectors allow you to store more than one value in a single data structure that puts all
the values next to each other in memory. Vectors can only store values of the same type.

 let mut v: Vec<i32> = Vec::new();

 v.push(5); v.push(6);
 v.push(7); v.push(8);

Using a macro, initialization code could be much simplified

 let v = vec![1, 2, 3]; // + type inference
 for i in &v { // imutable reference to vec elements
 println!("{}", i);
 }

14

Functions

Functions take arguments and return only one value.

 fn main() {
 let orga="Inria";

 println!("Successfully transformed organization : {}", villanize(orga));
 }

 fn villanize(o: &str)->String {
 o.replace("ia", "

!

")
 }

Here &str is a slice (reference to a string, same type as orga).
Rust does not need headers...

15

Control flow

Conditionals

Conditionals are familiar:

 if x {...} else {...}

 while x {
 ...
 }

and are expressions!

 let y = if x>2 {1} else {2};
16

⚠
 Ownership

Rust has rules regarding ownership

— Each value in Rust has a variable that’s called its owner.
— There can only be one owner at a time.
— When the owner goes out of scope, the value will be dropped.

 let x = "Hello world";

 {

 let y = "from Inria";

 }

 println!("{} {}", x, y); // -> error[E0425]: cannot find value `y` in this scope

17

Rust ensures that every resource is bound to a single value. In other words,
if a resource is reassigned from one variable to another, the first variable is
no longer valid.

 fn main() {

 let x = String::from("Hello, World!");

 println!("{}", x); // x is valid here

 let y = x; // the resource assigned to x is moved to y

 println!("{}", x); // -> error[E0382]: use of moved value: `x`

}

If you need a copy of x, it has to be explicitely written:

 let y = x.clone();

18

Move semantics

Rust is moving by default for non POD types:

 fn main() {
 let event=String::from("Midis de la bidouille"); // Object is created here
 publicize(event); // And moved inside publicize function
 println!("Huge audience at {}", event);
 }
 fn publicize(e: String) {
 println!("Please please, don't forget {}!", e);
 }

does not compile with

error[E0382]: use of moved value: `event`

 --> src/main.rs:4:37

 |

3 | publicize(event);

 | ----- value moved here

4 | println!("Huge audience at {}", event);

 | ^^^^^ value used here after move

 |

 = note: move occurs because `event` has type `std::string::String`, which does not implement the `Copy` trait

If you want to use event after the function call, you have to borrow it!

19

References and borrowing

— No borrow can outlive the original owner's scope.
— You can have as many immutable borrows, or references, to a resource at any given time.
— You can have a single mutable borrow, or reference, to a resource at any given time.

 fn main() {

 let event=String::from("Midis de la bidouille");

 publicize(&event); // & are explicit!

 println!("Huge audience at {}", event);

 }

 fn publicize(e: &String) {

 println!("Please please, don't forget {}!", e);

 }

In your early days in Rust, we will end up fighting the borrow checker that strictly applies these rules. A mutable borrow is allowed just once.

 publicize(&mut event);
 fn publicize(e: &mut String) {

References are dereferenced by * (not needed after .). They cannot be null (no NULL or nullptr), nor converted from integers.

20

Slices

Slices let you reference a contiguous sequence of elements in a collection rather than the whole collection.

For strings:

 let s = String::from("hello world");
 let hello = &s[0..5];

In fact "hello world" is a slice of type &str pointing to a static part of memory.

For arrays:

 let a = [1, 2, 3, 4, 5];
 let slice = &a[1..3];

21

Lifetimes and the borrow checker: safely returning references

The main aim of lifetimes is to prevent dangling references, which cause a program to reference data other than the data it’s intended to reference. The
following incorrect code does not compile.

 let r;
 {
 let x = 5;
 r = &x;
 }
 println!("r: {}", r);

with

error[E0597]: `x` does not live long enough
 --> src/main.rs:7:5
 |
6 | r = &x;
 | - borrow occurs here
7 | }
 | ^ `x` dropped here while still borrowed
...
10 | }
 | - borrowed value needs to live until here

22

Lifetime annotation

Consider a function that takes two parameters by reference and returns
one of them.

 #[derive(Debug)] // Trait derivation
 struct Person(String); // Anonymous struct

 fn prettiest(hb1: &Person, hb2: &Person)->&Person {
 hb1 // Life is unfair
 }

 fn main() {
 let f=Person(String::from("Francis"));
 let g=Person(String::from("Gérard"));

 println!("And Miss universe is {}", prettiest(&f, &g));
 }

23

This will not compile because what would happen if hb1 or
hb2 did not have the same lifetime?

Compiling playground v0.0.1 (file:///playground)
error[E0106]: missing lifetime specifier
 --> src/main.rs:4:43
 |
4 | fn prettiest(hb1: &Person, hb2: &Person)->&Person {
 | ^ expected lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but the signature does not say whether it is borrowed from `hb1` or `hb2`

The solution is to tell Rust that the two parameters have
to have the same lifetime named a.

fn prettiest<'a>(hb1: &'a Person, hb2: &'a Person)->&'a Person {
 hb1 // Life is unfair
}

24

— One can have several lifetimes.

 fn f<'a, 'b>(r: &'a i32, s: &'b i32) -> &'a i32 { r } »

— Struct and method definitions can also hold references.

 struct BoringStruct<'a> { // Lifetime of struct is the same as rr
 id: String,
 rr: &'a BoringRef
 }

— When there is no ambiguity, lifetimes can be elided.

 fn first_third(point: &[i32; 3]) -> (&i32, &i32) {
 (&point[0], &point[2])
 }
 // is the elided version of
 fn first_third<'a>(point: &'a [i32; 3]) -> (&'a i32, &'a i32)

25

Pointers

In Rust, the different smart pointers defined in the standard library provide extra functionality beyond that
provided by references. They are rarely needed in practice.

— Box<T> for allocating values on the heap,
— Rc<T>, a reference counted type that enables multiple ownership,
— Ref<T> and RefMut<T>, accessed through RefCell<T>, a type that enforces the borrowing rules at runtime

instead of compile time.

 fn main() {
 let b = Box::new(5);
 println!("b = {}", b);
 }
// -> b = 5

The pointers are autodereferenced when there is no ambiguity (as in the previous line).

26

Unsafe Rust

From an arbitrary address, one could dereference it. Rust
prevents it:

 let address = 0x012345usize;
 let r = address as *const i32;
 println!("{}",*r); // -> error[E0133]: dereference of raw pointer requires unsafe function or block

It can be done but then the code has to be marked unsafe.
Functions calling other unsafe languages (e.g. C/C++) have
also to be marked unsafe. Self-shooting in the foot is
much more difficult in Rust.

27

Gathering data and functions: Structs

Rust structs resemble struct types in C/C++or classes in Python. They are defined as follows

 struct Rep {
 name: String,
 email: String,
 genre: Genre, // BRB
 age: u32
 }

 // Definition of functions on the Rep struct
 impl Rep {
 // Class function
 fn new(name: String, email: String, genre: Genre, age: 32)->Rep {
 Rep {name, email, genre, age}
 }
 // Method (with self, &self, &mut self as first parameter)
 fn is_young(&self)->bool {
 self.age < 35
 }
 }

and that's it! There is no specific constructor or destructor.

28

Enum

C-style enums are also available and they can be enriched with data

 enum Genre {

 Male, Female, Neutral, AI(String)

 }

 fn main() {

 let gg=Genre::AI(String::from("

!

"));

 greets(gg);

 }

 // Matching clauses have to be exhaustive!

 fn greets(g: Genre) {

 match g { // Rust has powerful pattern matching features

 Genre::Male=>println!("Hello

"

"),

 Genre::Female=>println!("Hello

#

"),

 Genre::AI(desc)=>println!("Hello {}!", desc)

 };

 }

does not compile with

error[E0004]: non-exhaustive patterns: `Neutral` not covered
--> src/main.rs:12:11
|
12 | match g {
| ^ pattern `Neutral` not covered

29

Option

Option is an enum defined as follows:

enum Option<T> {

 None,

 Some(T)

}

and indicates an optional value (like an optional parameter).

 fn main() {
 let s=Some("thing");

 if let Some(v)=s {
 println!("Some{}",v);
 }
 else {
 println!("Nothing!");
 }
 }

30

Result

Result is defined as

enum Result<T,Error> {

 Err(Error),

 Ok(T)

}

and is commonly used as a function return value for efficient error handling.

fn i_could_fail()->Result<T,Error> {

 ...

 if success {

 return Ok(value);

 }

 else {

 return Err(errror);

 }

}

31

Rust paradigm

— Rust is not a really object oriented language:
— No inheritance of struct -> use composition or generics
— We have encapsulation (structs may remain private to their module)

— Rust has many functional languages features.

Iterators

— map, filter, enumerate, zip...
— collect, find...
— partition, collect...

 let reps=vec![...];

 let reps_ages_as_

!

=reps
 .iter()
 .map(|&r| r.age/7)
 .collect();

32

Closures

Rust has closures, lightweight function-like values.

 let is_even = |x| x % 2 ==0;

 assert_eq!(is_even(14),true);

Rust infers the argument and return types.

33

Generics

Generic data types

In Rust it’s possible to write code that operates on values of many different types, even
types that haven’t been invented yet.

We have already met generic in Enum and it works for struct as well.

 struct Point<T> {
 x: T,
 y: T,
 }

 fn main() {
 let integer = Point { x: 5, y: 10 };
 let float = Point { x: 1.0, y: 4.0 };
 }

34

Traits: shared behavior

Traits are Rust’s take on interfaces or abstract base classes.

 // Generic function where the trait is denoted by T (may be none if list is empty)

 fn oldest<T>(persons: &[T]) -> Option<u32> {

 persons

 .iter()

 .map(|&p| p.how_old())

 .max()

 }

 fn main() {

 let reps: Vec<Rep>=...;

 println!("The oldest one {} year old", oldest(&reps));

 }

35

Previous code won't work as Rust has no guarantee that a passed type has an age method. One has to constrain the
type.

 trait HasAge {

 fn how_old(&self)->u32;

 }

 impl HasAge for Rep {

 fn how_old(&self)->u32 {

 self.age

 }

 }

Traits can also provide default implementation (but no default member variables -> use accessors methods).

Operator overloading is implemented by defining standard Add, Sub, Ord..., traits for structs.

 impl Add<Field> for f64 {

 type Output = Field;

 fn add(self, other: Field) -> Field {

 other + self

 }

 }

36

Trait derivation

Using derivation, standard traits (and others) are often automagically implemented. Let's say we
want to serialize/deserialize our Rep struct to json.

 // Serde is a crate devoted to de-serializing to various formats.
 extern crate serde;
 extern crate serde_json;
 #[macro_use]
 extern crate serde_derive;
 use serde_json::Error;
 // Here we automatically derive 3 traits
 #[derive(Serialize, Deserialize, Debug)]
 struct Rep {
 ...
 }
 // Serialization occurs there without anything to write on our side
 fn rep_to_json(r: &Rep)->Result<(), Error> {
 let f = serde_json::to_string(r)?;
 println!("{}",f);
 Ok(())
 }

37

Trait objects

Generics are zero-cost abstraction, there is no penalty at run time.
What if we want a collection of types satisfaying a given trait? Trait
objects.

 trait HasHairs {} // We define a trait
 struct Rep;
 impl HasHairs for Rep {} // and its implementations (1)
 struct Sed;
 impl HasHairs for Sed {} // (2)

 struct HairyPeople { // We collect a vector of objects satisfying the trait
 members: Vec<Box<HasHairs>> // A Vec of Trait Object
 }

This is using dynamic dispatch so it has a cost at runtime.

38

Interfacing with external libraries (FFI)

Building external sources

Before compiling Rust code, one can build from other sources (e.g. C/C++ codes) and link the
Rust binary with it. This is achieved by adding a build.rs file inside the crate sources.

extern crate cmake; // CMake support for building

use std::env; // Environmental variables support

fn main() {

 let eigen_dir = env::var("EIGEN_DIR").unwrap_or(String::from("/usr/local/include/eigen3"));

 let dst = cmake::Config::new("cadmos")

 .define("EIGEN3_INCLUDE_DIR", eigen_dir)

 .define("CMAKE_CXX_FLAGS", "-O -g -Wall -std=c++11")

 .define("BUILD_BINDINGS", "ON")

 .build();

 println!("cargo:rustc-link-search=native={}/lib", dst.display()); // Instructions for Rust linker

 println!("cargo:rustc-link-lib=cadmos_ffi");

}

This is some code from my Rust port of our numerical framework.

39

Declaring alien interface

Interfacing is then a matter of wrapping the C interface.

use libc::c_double; // Support for c_double (convert to f64)
use core::MeshDesc;
use field::Field;

extern "C" {
 fn solve_diff_poisson_dirichlet(// Routine defined in an extern C library
 desc: *const MeshDesc,
 sol: *mut c_double,
 rhs: *const c_double,
 dir: *const c_double,
);
}

This can be done by a standard tool called bindgen that generates Rust
FFI bindings to C (and some C++) libraries automatically.

40

https://github.com/rust-lang-nursery/rust-bindgen

Calling external routines

The external library is called from Rust by:

 pub fn solve_poisson_dirichlet(&self, rhs: &Field, dir: &Field) -> Field {
 let mut res = Field::from_value(&self.grid, 0.0);
 unsafe {
 solve_diff_poisson_dirichlet(
 &self.grid,
 res.data.as_mut_ptr(), // Returns an unsafe mutable pointer to a slice buffer
 rhs.data.as_ptr(), // Returns a raw pointer to a slice buffer
 dir.data.as_ptr(),
);
 }
 res
 }

Note the unsafe keyword. The goal is to minimize as much as
possible these unsafe calls to benefit from Rust's safety.

41

Concurrency

Thanks to Rust ownership model and type checking, most concurrency problems (data races, deadlocks) are
prevented (at compile time): fearless concurrency. There are three ways to use Rust threads:
- Fork-join parallelism
- Channels
- Shared mutable state

Some crates (like crossbeam, or rayon) make writing multithreaded code even easier.

 extern crate rayon;
 use rayon::prelude::*;

 // do 2 things in parallel
 let (v1, v2) = rayon::join(fn1, fn2);

 // do N things in parallel
 giant_vector.par_iter().for_each(|value| {
 do_thing_with_value(value);
 });

42

https://crates.io/crates/crossbeam
https://crates.io/crates/rayon

There so much more

— Macros
— Modules and visibility
— Advanced closures
— Associated types
— Testing
— Advanced error handling
— Async I/O
— Ecosystem

43

Are we there yet?

— Steep learning curve.
— Rigidity (e.g. sorting a vector of floats).

— IDE
— Slow compilation times

— It gets better.
— Immature ecosystem for scientific computing

— Numpy equivalent (ndarray) but no standard linear algebra library.
— Tensorflow bindings.
— No-const generics.
— SIMD (as of version 1.27).

44

https://github.com/bluss/ndarray%5D

References

— Website http://www.rust-lang.org,
— The Rust book (https://doc.rust-lang.org/book/

second-edition/index.html)
— User forums (http://users.rust-lang.org),
— Rust community's crate registry (http://crates.io).

45

http://www.rust-lang.or
https://doc.rust-lang.org/book/second-edition/index.html
https://doc.rust-lang.org/book/second-edition/index.html
http://users.rust-lang.org
https://crates.io

Thank you for your a!ention
Olivier.Saut@inria.fr
h!p://osaut.monc.fr

46

http://osaut.monc.fr

