
Simple DirectMedia Layer
SDL2

Prof. Raoul Bidouille

http://dept-info.labri.fr/~namyst/no_link/soft/

Go and download NOW!

http://dept-info.labri.fr/~namyst/no_link/soft/

What do you need to attend this tutorial?

• A laptop with enough battery capacity

• A decent operating system
• If you’re under Linux, make sure you have the latest kernel version (2.4.x)

• libsdl2-devel, libsdl2-image, lidsdl2-mixer

• Mastering trigonometry

• Perseverance, Selflessness, Patience
• Tutorial is approx. 5 hours long

• A working internet connection
http://dept-info.labri.fr/~namyst/no_link/soft/

http://dept-info.labri.fr/~namyst/no_link/soft/

What will we learn today?

• Use SDL2 to
• Display and move graphical objects on screen

• Using a accelerated rendering engine

• Give the illusion objects are animated

• Play sounds and music

• Read keyboard input

• Use timers to trigger events at specific time

How the heck will we do that?

• Develop a simple 2D game from
scratch

• Incrementally add features
• From v1 to v10

• Each version focuses on a
particular topic

• You can implement vn event if you
failed to implement vn-1

• Shame on you!

Version 0: Curse of the Black Screen

• Look into src/graphics.c

• SDL_CreateRenderer()

• graphics_render() is called in a loop,
as fast as possible
• SDL_RenderClear()

• Then draw your scene
• SDL_RenderPresent()

• SDL implements double
buffering

cd v00
make
./game

Also try with performance monitoring:

./game –d p

Version 1: Clouds

• We want clouds on our screen

• We have to
• Load an image

• Convert the image to a texture
(think “on the gpu”)

• Stamp our texture on the screen

Version 1: SDL_RenderCopy()

src.x = 0;
src.y = 0;
src.w = width;
src.h = height;

dst.x = 0;
dst.y = 0;
dst.w = width;
dst.h = WIN_HEIGHT;

SDL_Texture SDL_Renderer

Version 1: Do it!

• Add a loop in graphics_render_background() to fill the screen

• Add a bird, by simply using

graphics_render_background (bird);

Version 1: Do it!

• Add a loop in graphics_render_background() to fill the screen

• Add a bird, by simply using

graphics_render_background (bird);

• Looks professional, doesn’t it?

Version 2

• We ultimately want to move the bird, but also many other objects…

• A typical main loop looks like:
• Poll events (keyboard, mouse, timers) and call appropriate functions

• Move main character (bird)

• Animate dynamic objects (missiles, bad birds, explosions, etc.)

• Compute collisions

• Render background + objects

Version 2: sprites and objects

• Sprites store graphical
representation
• texture(s), display size

• It’s a read-only object

• See src/sprite.c

• Objects
• Have their own coordinates

• May share a sprite with other
objects

X = 651
Y = 12
Sprite =
…

X = 987
Y = 75
Sprite =
…

obj1

obj2

bird_sprite

Version 2: Do it!

• Note the unconventional handling of UP, DOWN,LEFT and RIGHT keys

• Go to src/bird.c, and make it move up and down!

• Notice when bird is moved, and when graphical representation is
updated..

Version 3: The exhilarating sensation of speed

• We will add trees in the background, and make them move along x-axis
• Bird will stay at a fixed x position

• Trick
• We will use three different layers
• Each layer will move a different speed

• Near layer will move at x-speed = - BIRD_SPEED
• Middle layer will move at x-speed = - BIRD_SPEED / 2
• Far layer will move at x-speed = - BIRD_SPEED / 4

• How to make these layers move?
• Use a changing x-offset when stamping the textures
• graphics_render_scrolling_background()
• A story of “least common multiple”…

Version 4: animated sprites

• We now use textures which
contain “tilesets”

• The sprite type now contains
• frames (e.g. 8)

• xframes (e.g. 3)

• See src/sprite.c

• Look at graphics_render_object()

• current_sprite is used to compute
the source rectangle

Version4: Do it!

• Go to bird.c and make current_sprite evolve:
• 0, 1, …, 6, 7, 6, …, 1, 0, 1, …

Version 5: Gravity

• We now want to our bird to become subject to gravity
• Obj->ys++ should be ok

• Go to src/bird.c and proceed!

• Oh wait, don’t forget to keep the bird within the limits
• [0, WIN_HEIGHT]

Version 6: It’s wasn’t my war! (First Blood, 1982)

• Our bird goes wild… and wants
to shot laser beams
• Src/missile.c

• Press “SPACE” to shoot

• Hmmm, maybe we need to add
some code in
animation_missile_onestep()

Version 7: Sound!

• Add play_sound (SOUND_SHOT) in animation_missile_add()
• Test it!

• Look at src/sound.c
• Add a call to

• Mix_PlayMusic (music [current_track], -1);

• Add a call to
• animation_notice_add (current_track);

Version 8: Bad birds are coming!

• We use a “generator” object
which has no graphical
representation on screen
• Shows how to use timers

• Look at messages in terminal
while the game runs…

• Go to src/generator.c

• Replace printf with
animation_bad_add (obj)

Version 8: Bad birds are coming!

• But for now they follow a stupid trajectory…
• Go to src/bad.c and use a random altitude

• Oh my god, missiles have no effects

Version 9: Collision detection

• SDL doesn’t help with collision detection

• We will implement a simple, approximated method:
• Checking bounding box collision
• animation_check_collision_approx()

• Note: to avoid detect unnecessary collisions (e.g. with notices),
collidable objects are stored in an extra list

Missile Bird Text

mobile_objects

Colliding_objects

Version 10: Happiness is easy

• Per pixel collision detection
• Bitmaps are generated at sprite creation

• Much better uh?

• Thanks for attending!

