Simple DirectMedia Layer
SDL2

Prof. Raoul Bidouille

http://dept-info.labri.fr/~namyst/no link/soft/
Go and download NOW!



http://dept-info.labri.fr/~namyst/no_link/soft/

What do you need to attend this tutorial?

* A laptop with enough battery capacity

* A decent operating system
* If you’re under Linux, make sure you have the latest kernel version (2.4.x)

* libsdl2-devel, libsdl2-image, lidsd|2-mixer
* Mastering trigonometry

* Perseverance, Selflessness, Patience
* Tutorial is approx. 5 hours long

* A working internet connection
http://dept-info.labri.fr/~namyst/no link/soft/



http://dept-info.labri.fr/~namyst/no_link/soft/

What will we learn today?

 Use SDL2 to

* Display and move graphical objects on screen
* Using a accelerated rendering engine

Give the illusion objects are animated

Play sounds and music

Read keyboard input

Use timers to trigger events at specific time



How the heck will we do that?

* Develop a simple 2D game from
scratch

* Incrementally add features ~
* From v, to vy,

* Each version focuses on a
particular topic

* You can implement v, event if you
failed to implement v, 4

e Shame on youl!




Version O: Curse of the Black Screen

e Look into src/graphics.c
 SDL CreateRenderer()

« graphics_render() IS calledin a Ioop,
as fast as possible
 SDL _RenderClear()

* Then draw your scene
 SDL RenderPresent()

* SDL implements double
buffering

cd v0O
make
./game

Also try with performance monitoring:

./Jgame—d p




Version 1: Clouds

* We want clouds on our screen

* We have to
* Load an image

* Convert the image to a texture
(think “on the gpu”)

* Stamp our texture on the screen



Version 1: SDL RenderCopy()

src.x=0; dst.x = 0;

src.y =0; dsty =0;

src.w = width; dst.w = width;

src.h = height; dst.h = WIN_HEIGHT;

SDL_Texture SDL_Renderer



Version 1: Do it!

* Add a loop in graphics_render _background() to fill the screen

e Add a bird, by simply using
graphics_render _background (bird);



Version 1: Do it!

* Add a loop in graphics_render _background() to fill the screen

e Add a bird, by simply using
graphics_render _background (bird);

* Looks professional, doesn’t it?



Version 2

* We ultimately want to move the bird, but also many other objects...

* A typical main loop looks like:
 Poll events (keyboard, mouse, timers) and call appropriate functions
* Move main character (bird)
Animate dynamic objects (missiles, bad birds, explosions, etc.)
Compute collisions
Render background + objects



Version 2: sprites and objects

bird_sprite

* Sprites store graphical
representation
 texture(s), display size

* It’s a read-only object
* See src/sprite.c obj2

obj1 : 987
* Objects ;(:16251 / Sorite -
* Have their own coordinates Sprite =
* May share a sprite with other

objects



Version 2: Do it!

* Note the unconventional handling of UP, DOWN,LEFT and RIGHT keys
* GO to sre/bird.c,and make it move up and down!

* Notice when bird is moved, and when graphical representation is
updated..



Version 3: The exhilarating sensation of speed

 We will add trees in the background, and make them move along x-axis
e Bird will stay at a fixed x position

* Trick
* We will use three different layers
* Each layer will move a different speed
* Near layer will move at x-speed = - BIRD_SPEED

* Middle layer will move at x-speed = - BIRD_SPEED / 2
 Far layer will move at x-speed = - BIRD _SPEED / 4

* How to make these layers move?
* Use a changing x-offset when stamping the textures
* graphics_render_scrolling_background()
* A story of “least common multiple”...



Version 4: animated sprites

 WWe now use textures which
contain “tilesets”

* The sprite type now contains

e frames (e.g. 8)
* xframes (e.g. 3)
* See src/sprite.c

* Look at graphics_render_object()

* current_spriteis used to compute
the source rectangle




Version4: Do it!

* Go to bird.c and make current_sprite evolve:
01,..,6,7,6,..,1,0,1, ..



Version 5: Gravity

* We now want to our bird to become subject to gravity
 Obj->ys++should be ok

* GO tO src/bird.cand proceed!

* Oh wait, don’t forget to keep the bird within the limits
e [0, WIN_HEIGHT]



Version 6: It’s wasn’t my war! (First Blood, 1982)

* Qur bird goes wild... and wants

to shot laser beams
* Src/missile.c

e Press “SPACE” to shoot

* Hmmm, maybe we need to add

some code in
animation_missile_onestep()




Version 7: Sound!

* Add play_sound (SOUND_SHOT) in animation_missile_add()
* Test it!

e Look at src/sound.c

* Add acallto
* Mix_PlayMusic (music [current_track], -1);

 Add a call to
* animation_notice_add (current_track);



Version 8: Bad birds are coming!

 We use a “generator” object
which has no graphical
representation on screen
* Shows how to use timers

* Look at messages in terminal '// ' "
while the game runs... \\\

* GO tO src/generator.c

* Replace printf with
animation_bad_add (obj)




Version 8: Bad birds are coming!

* But for now they follow a stupid trajectory...
* Go to src/bad.cand use a random altitude

* Oh my god, missiles have no effects ®



Version 9: Collision detection

* SDL doesn’t help with collision detection

* We will implement a simple, approximated method:

* Checking bounding box collision
e animation_check_collision_approx()

* Note: to avoid detect unnecessary collisions (e.g. with notices),
collidable objects are stored in an extra list

Missile Bird Text

mobile_objects

Colliding_objects




Version 10: Happiness Is easy

* Per pixel collision detection
e Bitmaps are generated at sprite creation

* Much better uh?

* Thanks for attending!



